
U
a

A
D

a

A
R
R
1
A
A

K
C
E
M
H
S

1

c
[
b
c
m
a
t
d
t
s
o
m

a
e
e
c
m
r
o

0
d

Journal of Hazardous Materials 186 (2011) 645–650

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journa l homepage: www.e lsev ier .com/ locate / jhazmat

se of electrochemical techniques to characterize methamidophos and humic
cid specifically adsorbed onto Pt and PtO films

ndréia P. Silva, Adriana E. Carvalho, Gilberto Maia ∗

epartment of Chemistry, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, Campo Grande, MS 79070-900, Brazil

r t i c l e i n f o

rticle history:
eceived 30 September 2010
eceived in revised form
1 November 2010
ccepted 12 November 2010

a b s t r a c t

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study
methamidophos (MAP) and humic acid (HM) specifically adsorbed onto Pt and PtO films in pH-7.0 uni-
versal buffer. The approach was found to be sufficiently selective for use in studies involving adsorption of
species in environmental systems (e.g., soil minerals), typically evaluated by batch experiments and high
performance liquid chromatography (HPLC) or gas chromatography (GC). The proposed method allowed
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quantification of active hydrogen adsorption sites blocked by HM, both when this compound is adsorbed
alone or co-adsorbed with MAP. At higher amounts of MAP in the adsorption solution, the compound
was co-adsorbed more effectively than HM (kept at constant concentration). In the case of sequential
specific adsorption, the first compound adsorbed typically predominates over the second. EIS was more
effective for determining the number of blocked active sites on Pt than CV, which was superior for PtO
umic acid
pecific adsorption

films.

. Introduction

Sorption onto immobile mineral surfaces is often the key process
ontrolling mobility and degradation in subsurface environments
1]. A number of factors contribute to the partitioning of pesticides
etween solutions and solid phases. These factors include general
onditions of solutions (e.g., pH, concentration of pesticides), soil
ineral content, natural organic matter (NOM) content, and char-

cteristics of the mineral surfaces [2]. NOM may enhance or retard
he migration of pesticides in subsurface environmental systems,
epending on system composition (e.g., quantity and characteris-
ics of organic ligands) [1]. The main components of NOM are humic
ubstances (HS). Dissolved humic substances (DHS) are composed
f a mixture of humic and fulvic acids (HM and FV) of different
olecular weights [3].
Pollution of wastewater by organophosphorous pesticides is

common problem around the world and a focus of consid-
rable research effort. Organophosphorous compounds (OPCs),
xtensively used as insecticides, are known to inhibit acetyl-

holinesterase. Most are highly toxic to humans and other
ammals. Due to their high chemical stability and toxicity, OPCs

esist natural decomposition and biodegradation [4,5]. Moreover,
wing to their high polarity and dissolution capacity, they can
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easily infiltrate the soil and migrate to other locations [4]. Methami-
dophos (O,S-dimethyl phosphoramidothioate, MAP) is an OPC with
a broad spectrum of activity as an insecticide–acaricide through
inhibition of acetyl-cholinesterase activity in insects and mammals,
and is widely used on vegetables, corn, and some other crops [6].

The involvement of mineral surfaces in MAP sorption and
adsorption has been well established by numerous studies, includ-
ing those on MAP movement and sorption in sandy loam and clay
loam soils [1], MAP sorption by alluvial soils containing compo-
nents such as clays or Al/Fe oxides [2], MAP adsorption, desorption,
and mobility in sandy loam and clay soils [7], while OPC adsorption
phenomena have been investigated by equilibrating aqueous pes-
ticide (including MAP) solutions with six certified soils of varied
physico-chemical characteristics [8].

The studies of MAP sorption and desorption by soils have largely
been based on batch experiments with bulk samples and on quan-
tification of MAP using GC [1,2,9] or HPLC [10].

MAP interaction with different mineral surfaces has been pre-
viously reported, as has the influence of NOM on MAP sorption,
adsorption, and desorption. Recently, we conducted studies involv-
ing adsorption of propiconazole (PPC) and HM onto Pt and PtO films
[11], as well as adsorption of arsenic and HM onto these types of
film [12], using cyclic voltammetry (CV) and cyclic massograms. To

the best of our knowledge, no previous studies have investigated
MAP specifically adsorbed onto Pt and PtO films or the influence of
HM, a component of NOM, on MAP co-adsorbed onto these surfaces
using CV and electrochemical impedance spectroscopy (EIS) in pH-
7.0 universal buffer solution. The rationale behind conducting this

dx.doi.org/10.1016/j.jhazmat.2010.11.059
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:gmaia@nin.ufms.br
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Fig. 1. First CVs for (a, in 0.5 M H2SO4) pristine Pt (—) and (b–f, in pH-7.0 universal
buffer solution) (b) pristine Pt ( ), (c) Pt/HM ( ), (d) Pt/MAP ( ), (e) Pt/M4
HH2CH3S

Scheme 1. Chemical structure of MAP.

ype of study is to develop an alternative model for experiments
imed at detecting specifically adsorbed pesticides in soil samples,
o as to further clarify the factors influencing pesticide adsorp-
ion/desorption.

. Experimental

Electrochemical and EIS studies were carried out using a three-
lectrode glass cell with a working electrode consisting of a Pt
isc (0.1642 cm2 in geometric area) embedded in Teflon (polycrys-
alline Pt). A reversible hydrogen electrode (RHE) was employed
s the reference electrode and the counter-electrode consisted
f a Pt plate (Degussa). Electrochemical and EIS measurements
ere determined using an Autolab potentiostat/galvanostat (model

GSTAT128N) equipped with a FRA2.X module. The EIS experi-
ents were conducted at fixed potentials (0.25, 0.55, 0.9, and 1.15 V

s. RHE) with a potential perturbation of 10 mV (rms), within the
requency range of 40 mHz to 10 kHz. NOVA 1.5 Autolab (2009) soft-
are was used to simulate the behavior of equivalent circuits of

he interface in the presence of specific adsorption, and the param-
ters of these circuits were fitted to the measured spectra using a
on-linear least squares program.

The working electrode was electrochemically cleaned in ultra-
ure N2-saturated pH-7.0 universal buffer (or 0.5 M H2SO4)
olution, as described in our previous study [11]. The ratio-of-
oughness factor [11], determined by the amount of hydrogen
esorbed into pH-7.0 universal buffer, was 1.64 ± 0.03, calculated
ased on the relation 2.10 C m−2 for the formation of a H monolayer
n a Pt surface [13].

MAP (Scheme 1) was obtained from Riedel-de-Haën (analyti-
al standard), HM from Aldrich (technical grade), and H2SO4 from
erck (p.a.). The universal buffer [14] (pH 7) contained boric

cid, citric acid, trisodium phosphate, and Na2SO4 (to maintain
n ionic force of 0.5 M) (all chemicals from Merck). The solutions
ere prepared using Milli-Q water and purged for 20 min with
ltrapure nitrogen (White Martins) prior to each experiment. The

pecific adsorption procedure entailed immersing a cleaned Pt or
tO film electrode for 20 min in seven freshly prepared aqueous
olutions (see Table 1, which also lists the electrodes and specif-
cally adsorbed species). The open-circuit potential (Eoc) of the
queous solutions in contact with the Pt or PtO films was found to

able 1
omenclature and composition of solutions used during specific adsorption, and
lectrode designation of modified electrodes with specifically adsorbed species.

Solutiona Composition Electrode
designation

S1 10 mg carbon L−1 HM Pt/HM or PtO/HM
S2 1 × 10−6 M MAP Pt/MAP or PtO/MAP
S1/S2b 10 mg carbon L−1 HM/1 × 10−6 M MAP Pt/HM/MAP or

PtO/HM/MAP
S2/S1b 1 × 10−6 M MAP/10 mg carbon L−1 HM Pt/MAP/HM or

PtO/MAP/HM
S3 1 × 10−6 M MAP and 10 mg carbon L−1 HM Pt/M1 or PtO/M1
S4 5 × 10−6 M MAP and 10 mg carbon L−1 HM Pt/M2 or PtO/M2
S5 1 × 10−5 M MAP and 10 mg carbon L −1 HM Pt/M3 or PtO/M3
S6 5 × 10−5 M MAP and 10 mg carbon L −1 HM Pt/M4 or PtO/M4
S7 1 × 10−4 M MAP and 10 mg carbon L−1 HM Pt/M5 or PtO/M5

a pH values approximately 5.0 for all solutions.
b In cases of sequential adsorption, the electrode was copiously washed with
ater between adsorptions.
( ), and (f) Pt/M5 ( ). The modified electrode surfaces were washed with
water (5 times) before CV acquisition. Scans start at 0.05 V vs. RHE in the positive
potential direction. Scan rate: 100 mV s−1.

be approximately 0.90 V. After immersion, the electrode was copi-
ously washed with water and transferred to an electrochemical cell
containing pH-7.0 universal buffer. The other experimental condi-
tions were as described in our previously published study [11].

We made the assumption that the PtO films formed were similar
to those produced in our previously published experiments [11,12],
with the only difference in the present study being the use of pH-7.0
universal buffer solution.

3. Results and discussion

3.1. CV study of HM and MAP specifically adsorbed onto Pt

Fig. 1 shows the behavior of the first CV cycle in 0.5 M H2SO4
for pristine Pt, as well as in pH-7.0 universal buffer for pristine Pt
and four Pt electrodes modified by specific adsorption from four
different aqueous solutions (see Section 2). The CV regions delim-
ited in Fig. 1 have been described elsewhere [11,12]. Briefly, region
I is related to UPD hydrogen adsorption/desorption; region II, to
the double layer charging/discharging of the Pt surface; region III,
to the oxidation of the Pt surface to form a Pt oxide, and possi-
bly also related to the oxidation of the adsorbed compounds and
subsequent reduction of Pt oxide in the negative potential scan
direction.

For both pair of peaks (HA2, HA1 and HC2, HC1) [11,12], displace-
ment was observed toward more positive potential for pristine
Pt in the presence of pH-7.0 universal buffer, in comparison to
0.5 M H2SO4 (curves b–a, Fig. 1). An overall decrease in the current
densities involving UPD hydrogen desorption/adsorption was also
revealed by comparing the four modified Pt electrodes with pris-
tine Pt (Fig. 1). This suggests interactions between Pt surface sites
and both HM and MAP—interactions that modify both the oxida-
tion of adsorbed hydrogen (HA2, HA1) and the reduction related to
hydrogen adsorption (HC2, HC1).

The increase in current densities observed in region II relative to
pristine Pt (Fig. 1) suggests that compounds adsorbed onto the Pt

surface are oxidized (positive potential scan direction) and reduced
(negative potential scan direction) in this region, and that these
oxidation/reduction current densities are mainly affected for the
Pt/HM and Pt/MAP electrodes (Fig. 1).
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Fig. 2. Capacitance spectra (10 kHz to 40 mHz, clockwise) for (a, in 0.5 M H2SO4)
pristine Pt (—) and (b–f, in pH-7.0 universal buffer solution) (b) pristine Pt (
), (c) Pt/HM ( ), (d) Pt/MAP ( ), (e) Pt/M4 ( ), and (f) Pt/M5 ( ). The
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In region III (positive potential scan direction), changes in the
urrent densities are also seen, with a decrease in current densi-
ies in the potential range of 0.88–1.13 V relative to pristine Pt in
.5 M H2SO4 (Fig. 1). At potentials higher than 1.13 and 1.07 V, the
urrent densities become significantly higher relative to pristine Pt
n 0.5 M H2SO4 (curve a, Fig. 1) and pH-7.0 universal buffer (curve
, Fig. 1), respectively. The former dependence suggests that the
dsorbed compounds block the active sites for Pt oxidation in this
egion and that this blockage depends on the nature of the com-
ound, whereas the latter dependence suggests that the adsorbed
ompounds might be oxidized in this potential range. Upon revers-
ng the potential scan toward the negative direction, differences
n region III were detected, primarily due to a decrease in the cur-
ent densities for the reduction peak at 0.70 V (Fig. 1). (Patterns
ollowed by current densities for different adsorbed compounds
re described in section SI).

We have recently proposed a mechanism describing the adsorp-
ion and oxidation of HM on Pt [11] and it should be stressed that the
xidation products of HM can be again adsorbed onto the Pt surface
12]. It is possible that in pH-7.0 universal buffer solutions the first
lectron transfer to adsorbed HM may occur in the potential region
f 0.8 V and the second electron transfer at 1.3 V, whereas some
eduction of oxidized HM products may take place in the potential
egion of 0.55 V.

MAP has been reported to have a greater tendency to protonate
t higher pKa values (pKa 10) [2,9,15] because of its weak basic
olecule. MAP can be ionized by protonation of either the P O or

he –NH2 group (reactive functional groups) at pH 4–8 [2,9,15]. Pro-
onation may promote adsorption of MAP by soil organic matter or
iliceous clay through coordinate bonds [9]. However, protonated
pecies of MAP may undergo a series of rearrangements because
f charge distribution and charge delocalization among P, N, and O
toms [9,15]. Under the effects of this charge delocalization, MAP
oes not acquire a true protonated NH3

+ group, and there is a net
ositive charge only at the N atom that constituted the cationic
omain in MAP [9,15]. The polarity of protonated MAP molecules

s therefore weak, and MAP adsorption is thought not to occur
hrough cation exchange reaction (substituting the metal ions fixed
n the surfaces of soil colloids), but possibly by the action of forces
etween molecules, such as van der Waals forces and hydrogen
onds [16].

We are assuming that at pH 5.0 (the pH value of our specific
dsorption solutions) the protonated MAP species 1 or 2, adsorbed
nto the Pt (or PtO film) surface by the –OH (or –O−) moiety or
NH2, will be oxidized as follows:

Sing et al. [15] and Martínez-Huitle et al. [17] suggested that
SCH3 is a leaving group, but we are not assuming that both elec-
rons are necessarily removed in a single step.

.2. EIS study of HM and MAP specifically adsorbed onto Pt
Fig. 2 illustrates the behavior of the capacitance spectra (40 mHz
o 10 kHz, with frequencies decreasing clockwise) measured at 0.25
nd 1.15 V and at 0.55 and 0.9 V (Fig. S3) in 0.5 M H2SO4 for pris-
ine Pt, and in pH-7.0 universal buffer for pristine Pt and nine Pt
modified electrode surfaces were washed with water (5 times) before EIS acquisi-
tion. Constant potentials for EIS acquisition at (A) and (B): 0.25 and 1.15 V vs. RHE,
respectively. Dashed lines represent spectra calculated (adjusted) by a non-linear
least squares program for the circuits described in Section 3.2.

electrodes modified by specific adsorption from seven different
aqueous solutions (see Section 2). These four values of constant
potential for the EIS study were selected so as to cover three rep-
resentative points of the voltammetric studies discussed in Section
3.1 (0.25, 0.55, and 1.15 V) and the region of Eoc (0.9 V) for the
electrodes studied.

The measured spectra represented graphically in this
study are based on calculations and plots of the complex
function C(ω) = Y(ω)/(iω) = 1/([Z(ω) − Z(ω → ∞ )]Aiω), where ω,
Z(ω → ∞) = Rs, A, and i represent angular frequency, solution resis-
tance, electrode area, and imaginary unit, respectively. Because
of its physical meaning, C(ω) is termed ‘interfacial capacitance’
and, being a complex quantity, can be plotted only in complex
representation [18,19].

As suggested by Kerner, Pajkossy, and Kolb [19–20], the
measured impedance spectra for circuits [Rs(Cdl[RadWadCad])],
[Rs(Qdl[RadWadCad])], or [Rs(Qdl[RadCad])] can be simulated in the
potential regions of specific adsorption, where Cdl, Rad, Wad,
Cad, and Qdl represent double-layer capacitance, adsorption resis-
tance, Warburg impedance (diffusional impedance associated with
species adsorption), adsorption capacitance, and phase constant
element involving an n exponent to represent Cdl, respectively.
The adsorption-related elements of this circuit can be interpreted
by the classical adsorption impedance theories devised by Ershler,
Frumkin and Melik-Gaykasyan, and Lorenz and Möckel (see ref-
erences cited in [18–20]), which yield the expected capacitance
spectrum C(ω):

C(ω) = 1
iω(Z(ω) − Rs)

= Cdl + Cad

1 + �adCad(iω)1/2 + RadCadiω
(1)
where �ad is the coefficient of the Warburg impedance defined by
Z(Wad) = �ad(iω)−1/2 [18,19].

The C(ω) spectra are plotted in the complex plane as circular
(Figs. 2 and S3) or distorted arcs [18]; semicircular and ‘depressed’
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rcs at the extremes of slow and fast (diffusion-controlled) adsorp-
ion, respectively; or skewed arcs in intermediate, mixed kinetics
ases (cf. Fig. 1 in [18,19]). Irrespective of adsorption kinetics,
he second term of Eq. (1) approaches zero at high frequencies,
evealing that the high frequency limit is equal to the double-
ayer capacity (C(ω → ∞) = CHF = Cdl), whereas at low frequencies
he sum of double-layer capacity and adsorption capacity can be

easured (C(ω → 0) = CLF = Cdl + Cad) [19]. These capacities have the
hysical meanings Cdl = (∂qM/∂E)� and CLF = dqM/dE, respectively,
here qM and � represent excess charge of the metal and surface

xcess of the adsorbate, respectively [18]. The denominator of the
econd term of Eq. (1) increases with decreasing adsorbate con-
entration (cf. Eq. (3) in [19]), and thus the C(ω) spectra shrink
oward Cdl at high frequencies as the concentration of adsorbate
alls [21].

As seen in Figs. 2 and S3, C(ω) spectra are semicircles, suggest-
ng an extreme of slow (diffusion-controlled) adsorption, revealing
verall shrinkage of spectra toward Cdl as the concentration of
dsorbate decreases as a result of previous specific adsorption of
ompounds (a process that blocks electrode surface to hydrogen
dsorption at 0.25 V), adsorption of anionic species present in pH-7
niversal buffer at 0.55 V, and oxygen adsorption at 0.9 and 1.15 V.
he ReC values intercepting the ordinate near zero for ω → ∞ can
e attributed to the elevated concentration of adsorbate – 0.5 M
2SO4 or pH-7.0 universal buffer (ionic force, 0.5 M) – while also

nfluencing spectra by shaping these as semicircles, thus suggesting
n extreme of slow (diffusion-controlled) adsorption of adsorbate
y virtue of this elevated concentration.

Tables S1–S4 show the values of equivalent circuit elements
btained with the non-linear least squares program. These tables
rovide a broader view of the theoretical (simulated) and experi-
ental EIS results shown in Figs. 2 and S3.
The Rs and Rad values (Tables S1–S4) are small (but non-null)

nd can generally be considered equal to 5 � cm2. Although Rad is
ypically non-null in systems having adsorbed ions (ref. 7 cited in
18]), in the systems studied in [18] Rad played no relevant role, as
s the case in the present system. Cdl or Qdl coupled with an n expo-
ent to represent Cdl are generally around 20 �F cm−2 [18], with
ome exceptions at lower values (Pt/HM electrode, Table S1, and
t/M4 electrode, Table S2) and higher values (pristine Pt electrode
n 0.5 M H2SO4, Table S4). The values of n range from 0.34 (Pt/M2
lectrode, Table S3) to 0.97 (electrode Pt/MAP, Table S2). Wad val-
es vary according to the modified electrodes, and were decreased
verall for Pt/M2-Pt/M5 (Table S1) and Pt/M1-Pt/M5 (Table S4)
lectrodes. This suggests a decrease in the spread of those species
pecifically adsorbed on these electrodes (hydrogen and oxygen
pecies, respectively).

The largest differences were observed for Cad, especially for EIS
xperiments conducted at 0.25 (Table S1) and 1.15 V (Table S4).
or EIS experiments conducted at 0.25 V (Table S1), high Cad val-
es were calculated for pristine Pt in the presence of 0.5 M H2SO4
nd pH-7.0 universal buffer. For the electrode modified with HM
Pt/HM), Cad was much lower than that obtained for pristine Pt
ith pH-7.0 universal buffer. Moreover, Cad values were gener-

lly decreased for the Pt/M1-Pt/M5 electrodes—a similar pattern
f decline was observed for Cad for the same electrodes in EIS
xperiments conducted at 0.55 (Table S2), 0.90 (Table S3), and
.15 V (Table S4). This behavior is consistent with the decrease

n the number of active sites for adsorption of species in pH-7.0
niversal buffer (hydrogen, anions, oxygen species), owing to the
resence of compounds previously specifically adsorbed in solu-

ions S1–S7.

Based on the occurrence of major changes detected for Cad (and
maller variations detected for Wad) in EIS experiments conducted
t 0.25 and 1.15 V, we calculated the charge densities at these two
oint potentials using a simple expression that relates Cad to charge
Materials 186 (2011) 645–650

density:

q = CadE (2)

The charge densities in two regions (I and III) of the cyclic
voltammetric results shown in Figs. 1 and S2 were calculated as
described in [11]. These charge densities were used to calculate
the densities of active sites blocked by spontaneously adsorbed
compounds in regions I and III, and at two point potentials (0.25
and 1.15 V), NAS,I

bloc and NAS,III
bloc, respectively, using the equations

[22]:

NAS,I
bloc = (QH

blank(or q0.25 V
blank) − QH

des(or q0.25 V
mod elec))

(
NA

F

)

(3)

NAS,III
bloc = (QPt ox red

blank(or q1.15 V
blank)

−QPt ox red(or q1.15 V
mod elec))

(
NA

2F

)
(4)

where QH
blank = 210 �C cm−2 is the value obtained for pris-

tine Pt in 0.5 M H2SO4 and pH-7 universal buffer (for the
meaning of QH

blank and Q, see [11]), q0.25 V
blank = 200 �C cm−2,

q1.15 V
blank = 130 �C cm−2, q0.25 V

mod elec, and q1.15 V
mod elec were

obtained using Eq. (2) for modified electrodes, NA is the Avogadro
number, and F is the Faraday constant.

The NAS,I
bloc and NAS,III

bloc values shown in Table 2 vary with
the specifically adsorbed compounds, rising overall for the Pt/M1-
Pt/M5 electrodes. Where UPD hydrogen desorption occurs at lower
positive potentials, it is generally twice as high for NAS,I

bloc calcu-
lated using data obtained from q instead of Q. This may suggest that
the higher sensitivity achieved by using results from EIS experi-
ments, rather than from CV, in this potential region, can probably
be explained by the additional current densities present in the
potential region of 0.05–0.15 V in the case of CV. The number of
active sites blocked by HM at the Pt/HM electrode was calculated
as 468 × 1012 sites cm−2, and those blocked by MAP at the Pt/MAP
electrode as 673 × 1012 sites cm−2. Assuming the occurrence of co-
adsorption, we considered that the sites for hydrogen adsorption
at the Pt/HM/MAP and Pt/MAP/HM electrodes are predominantly
blocked by HM and MAP, respectively, as these are the earliest com-
pounds to be adsorbed onto those electrodes—a feature that should
yield values similar to those obtained for HM and MAP when these
are individually adsorbed, with the difference in NAS,I

bloc (24 × 1012

and 84 × 1012 sites cm−2) being attributed to co-adsorption of MAP
and HM, which block the sites for hydrogen adsorption. In the
case of the Pt/M1 electrode, we assumed that 468 × 1012 sites cm−2

were blocked by specific adsorption of HM, whereas the remaining
value (i.e., (504–468) × 1012 sites cm−2 = 36 × 1012 sites cm−2) was
attributed to co-adsorption of MAP due to the presence of MAP
at low concentration in the S3 solution used for specific adsorp-
tion. For the Pt/M2-Pt/M5 electrodes, we assumed co-adsorption
of HM (with MAP) to be less than 468 × 1012 sites cm−2, although
it was not possible to quantify this figure. The highest number of
active sites blocked by MAP was found for the Pt/MAP and Pt/M5
electrodes (637 × 1012 sites cm−2 = (1105–468) × 1012 sites cm−2).

At high positive potentials where oxide formation occurs (PtOx

formation in region III; see Table 2), similar values were generally
observed for NAS,III

bloc calculated using data from q instead of Q.

Following the same reasoning outlined in the previous paragraph,
the highest number of active sites blocked by HM was found for
the Pt/HM electrode (162 × 1012 sites cm−2) and the highest num-
ber of those blocked by MAP was found for the Pt/MAP and Pt/M5
electrodes (150 × 1012 sites cm−2).
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Table 2
Number of blocked active sites estimated from the cyclic voltammograms depicted in Figs. 1 and S2, and from Cad values obtained from spectra calculated from EIS results
at 0.25 and 1.15 V in Figs. 2 and S3.

Interface NAS,I
bloc (×10−12 sites cm−2) NAS,I

bloc (×10−12 sites cm−2)a NAS,III
bloc (×10−12 sites cm−2) NAS,III

bloc (×10−12 sites cm−2)b

Pristine Pt (0.5 M H2SO4) 0 0 0 0
Pristine Pt (pH-7 universal

buffer solution)
0 0 0 0

Pt/HM 200 468 194 162
Pt/MAP 212 673 175 127
Pt/HM/MAP 462 492 250 139
Pt/MAP/HM 331 757 116 159
Pt/M1 131 504 187 195
Pt/M2 474 897 184 282
Pt/M3 462 833 219 213
Pt/M4 418 993 362 312

t 0.25
t 1.15

3
P

f
p
a
I
t
I
l

F
u
(
w
t
(
i
P
w
a
a

Pt/M5 630 1105

a Determined from Cad values obtained from spectra calculated from EIS results a
b Determined from Cad values obtained from spectra calculated from EIS results a

.3. CV and EIS study of HM and MAP specifically adsorbed onto
tO films

Fig. 3 shows the behavior of the first CV cycle in 0.5 M H2SO4
or a pristine PtO film, as well as in pH-7.0 universal buffer for a
ristine PtO film and four PtO film electrodes modified by specific
dsorption from four different aqueous solutions (see Section 2).

nitially, significantly lower current densities were detected rela-
ive to Pt, owing to the presence of a PtO film (compare Figs. 1 and 3).
n the scan toward positive potentials, the current densities were
ower in the potential region of 0.82–1.40 V. A decrease in current

ig. 3. First CVs for (a, in 0.5 M H2SO4) pristine PtO film (—) and (b–f, in pH-7.0
niversal buffer solution) pristine PtO film ( ), (c) PtO/HM ( ), (d) PtO/MAP

), (e) PtO/M4 ( ), and (f) PtO/M5 ( ). The modified electrode surfaces were
ashed with water (5 times) before CV acquisition. Scans start at 0.75 V vs. RHE in

he positive potential direction. Scan rate: 100 mV s−1. Inset: capacitance spectra
10 kHz to 40 mHz, clockwise) for (a, in 0.5 M H2SO4) pristine PtO film (—) and (b–f,
n pH-7.0 universal buffer solution) pristine PtO film ( ), (c) Pt/HM ( ), (d)
t/MAP ( ), (e) Pt/M2 ( ), and (f) Pt/M5 ( ). The modified electrode surfaces
ere washed with water (5 times) before EIS acquisition. Constant potential for EIS

cquisition: 1.15 V vs. RHE. Dashed lines represent spectra calculated (adjusted) by
non-linear least squares program for the circuit [Rs(Qdl[RadWadCad])].
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densities was detected for the Pt/HM, Pt/MAP, and PtO/M4-PtO/M5
electrodes. These responses confirm co-adsorption of HM and MAP,
and greater amounts of MAP are possibly adsorbed at increasing
concentrations of the solutions used for specific adsorption (Fig. 3).
In the scan toward negative potentials, the current densities are
decreased (in modulus) in the potential region of 1.32–0.75 V. These
comparisons are made in relation to pristine PtO film.

The inset to Fig. 3 illustrates the behavior of the capacitance
spectra (40 mHz to 10 kHz, with decreasing frequencies clockwise)
measured at 1.15 V in 0.5 M H2SO4 for pristine PtO film, and in pH-
7.0 universal buffer for pristine PtO film and four PtO film electrodes
modified by specific adsorption from four different aqueous solu-
tions (see Section 2). A similar reasoning to that applied to Section
3.2 can explain the EIS results shown in the inset to Fig. 3 and in
Table S5, which presents the values obtained for equivalent circuit
([Rs(Qdl[RadWadCad])]) elements using a non-linear least squares
program. The results shown in Table S5 do not differ from those
previous discussed in Section 3.2, and using the Cad values to calcu-
late q from Eq. (2) and Q from CV results, it was possible to calculate
NAS,PtO oxid

bloc and NAS,PtO red
bloc (similarly to Eq. (4)).

The NAS,PtO oxid
bloc and NAS,PtO red

bloc results are shown in
Table S6, revealing that CV experiments were more sensitive
than EIS experiments. The number of active sites blocked by
HM was calculated as 84 × 1012 sites cm−2 at the PtO/HM elec-
trode and 25 × 1012 sites cm−2 at the PtO/M1 electrode, whereas
the number of those blocked by MAP at the PtO/MAP elec-
trode was 50 × 1012 sites cm−2. For the Pt/M2-Pt/M5 electrodes we
assumed co-adsorption of HM (with MAP). The highest number
of active sites blocked by MAP was found at the Pt/M4 electrode
(59 × 1012 sites cm−2 = (84–25) × 1012 sites cm−2).

4. Conclusions

We demonstrated the feasibility of determining the number
of active sites blocked by HM adsorbed alone or co-adsorbed
with MAP. When the concentration of MAP in a specific adsorp-
tion solution is increased, the compound is more effectively
co-adsorbed than HM (used at constant concentration). In this
higher-concentration environment, however, the amount of co-
adsorbed MAP is virtually the same as when used alone at a lower
concentration for specific adsorption (assuming the amount of
co-adsorbed HM does not vary in either case, not even in the pres-

ence of high concentrations of MAP in mixed solutions for specific
adsorption). In the case of sequential specific adsorption, the first
compound typically predominates over the second. In addition, EIS
was more effective for determining the number of blocked active
sites on Pt than CV, which was superior for PtO films.
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Our approach can be applied to different studies involving nox-
ous organic compounds (such as pesticides) or metals capable of
dsorbing onto metal or metal oxide surfaces (and also onto envi-
onment systems such as soil minerals). The procedure therefore
epresents an alternative to batch experiments and other analytical
echniques for quantification of these compounds.
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